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ABSTRACT

The ‘‘Doppler spread’’ theory of atmospheric gravity waves has developed rapidly in recent years, from an
initial theory of wave spectra into a general parameterization of gravity wave effects for use in global models
of the middle atmosphere. Yet the theory currently employs certain key approximations that have still to be
tested. The author focuses on the omission of the propagation of the other waves in the spectrum when determining
the Doppler spreading of a given gravity wave. This approximation is shown to become untenable as waves are
refracted to progressively shorter vertical scales, so ray methods are employed to investigate the refraction
characteristics of short waves within propagating long-wave fields. Short-wave refraction is reduced compared
to the Doppler-spread results. While turning levels are common, critical levels do not occur if all waves propagate
upward in the absence of mean wind shear. Consequently, a sharp increase in the probability of wave obliteration
beyond the so-called cutoff vertical wavenumber (a central tenet of Doppler-spread theory) no longer occurs.
Possible implications of these results for models of wave–field interactions, spectra, and momentum deposition
are discussed.

1. Introduction

High-resolution probing of the middle atmosphere re-
veals characteristic vertical wavenumber spectra of
gravity wave perturbations of horizontal velocities, tem-
peratures, and densities. In particular, the power spectral
densities at vertical scales less than a few kilometers or
so are well fitted by a power law of the form ab(N)
M23, where M is the Fourier wavenumber, and b(N)
depends on the Brunt–Väisälä frequency N and is de-
rived from elementary gravity wave formulas (e.g., see
Smith et al. 1987; Tsuda et al. 1991). The scaling factor
a is nearly constant, typically around 1/10–1/6, although
lower values are sometimes encountered, particularly in
the stratosphere (e.g., Hines 1993a; Eckermann 1995).

A number of gravity-wave-based theories have been
developed to explain these spectral shapes. Early efforts
invoked wave amplitude saturation due to static insta-
bilities as the primary cause (Dewan and Good 1986;
Smith et al. 1987). Weinstock (1990) argued that the
random fluctuations of saturated small-scale waves pro-
duced a diffusive damping of larger-scale waves, and
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his theoretical development yielded M23 model spectra
[see also subsequent models based on these ideas by
Gardner (1994), Zhu (1994), and Medvedev and Klaas-
sen (1995)]. Dewan (1991) derived gravity wave spectra
that resembled observations by assuming a cascade of
saturated wave energy from larger to smaller spatiotem-
poral scales. All of these theories arrived at M23 spectra
by applying dissipative processes of some kind to the
wave field.

An altogether different theory was developed in a
series of papers by Hines (1991a,b,c; 1993a,b; 1996;
1997a,b,c), which he has called Doppler-spread theory.
While dissipation of wave energy and pseudomomen-
tum are incorporated (e.g., Hines 1997a,b), such pro-
cesses play no significant role in producing observed
spectral shapes within this theory. The Doppler-spread
model is most easily introduced by considering a short
wave of initial vertical wavenumber m0 that propagates
through a preexisting long wave of vertical wavenumber
mlw, such that |mlw| K |m0|. In modeling this situation,
Doppler-spread theory assumes that the velocity oscil-
lation of the long wave acts like a time-invariant, ver-
tically varying mean-flow profile that refracts the short
wave, changing its vertical wavenumber and amplitude
as it propagates and thus ‘‘spreading’’ its spectral sig-
nature through M space. When the long wave is replaced
by a spectrum of many randomly phased long waves,
their superposed velocity oscillations refract the short
wave more randomly. When all waves (both longer and
shorter) are considered, Hines (1991a,b) argued that,
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over time, a characteristic statistical spread of a given
gravity wave’s vertical wavenumber results, which is
centered about m0 and has a width dependent mainly on
the horizontal velocity variance of the other waves in
the spectrum.

Hines (1991a,b) further argued that this ‘‘Doppler
spreading’’ of gravity wave m values was appreciable
in the middle atmosphere. Advective interactions among
oceanic gravity waves are also substantial (e.g., Hol-
loway 1980; Desaubies and Smith 1982; Sherman and
Pinkel 1991), and Munk (1981) speculated that spread-
ing effects might explain the formation of spectral
shapes ;M23, which are often observed at large M with-
in the ocean (e.g., D’Asaro and Morehead 1991). Since
then, a number of sophisticated modeling approaches
have been developed to study nonlinear interactions
among oceanic gravity waves (see the review of Müller
et al. 1986). Some of these models, which have sought
to incorporate the major advective interactions among
the waves, have generated oceanic wave spectra in
agreement with observations (e.g., Orlanski and Cera-
soli 1981; Flatté et al. 1985; Shen and Holloway 1986;
Allen and Joseph 1989; Hibiya et al. 1996).

Hines (1991a) proposed that Doppler-spreading ef-
fects could also explain the formation of M23 spectra
within the atmosphere. Rather than attempting to adapt
the complex models of oceanic wave dynamics to the
atmosphere, Hines (1991b, 1993b) pursued an atmo-
spheric theory by first developing a statistical model of
Doppler-spread interactions among atmospheric gravity
waves. This Doppler-spreading model was then com-
bined with models of incident (unspread) wave-field
spectra to derive Doppler spread fluctuation spectra
(Hines 1991b, 1993b).

These Doppler-spread spectra contained features that
resembled observations. For example, the theory pre-
dicted a ‘‘cutoff wavenumber’’ MC, which roughly
marked a transition from essentially unspread spectra at
M K MC to Doppler spread tail spectra at M k MC that
attenuated with increasing M. Predicted values of MC

agreed well with the locations of shape transitions in
observed spectra from various regions of the atmosphere
(Hines 1991b). This cutoff wavenumber assumed pri-
mary importance in a subsequent Doppler-spread pa-
rameterization of gravity-wave momentum deposition
(Hines 1997a,b), which, despite including a number of
untested assumptions and uncertain parameter values,
performed well when used in global middle atmosphere
models (Mengel et al. 1995; Lawrence 1997; Manzini
et al. 1997).

Despite these successes, Doppler-spread theory could
not self-consistently yield the required M23 spectral
shape at large M. This shortcoming was investigated in
some depth by Hines (1993b). He identified the follow-
ing three key approximations within the theory that
could cause disagreement among predicted and ob-
served spectra.

R Approximation 1. In quantifying how the velocity os-
cillations of all other waves affect any given gravity
wave, these velocities were simplified to be
(a) purely horizontal
(b) invariant with time
(c) invariant with horizontal displacement.

R Approximation 2. Doppler spreading was modeled us-
ing WKB wave formulas for single linear plane waves.

R Approximation 3. Gravity waves experienced negli-
gible damping up to some maximum wavenumber mM

beyond which waves were completely dissipated into
turbulence.

Hines (1993b) considered Approximation 1 to be the
most potentially serious and, citing the oceanic model
of Allen and Joseph (1989), argued that eliminating it
should lead to M23 Doppler-spread spectra at M k MC.
Here, we investigate this by progressively relaxing (and
ultimately eliminating) Approximation 1. Our formu-
lation attempts to maintain and build upon the analytical
and illustrative approach to the Doppler-spreading prob-
lem initiated by Hines. To this end, three simple models
are considered initially. They are depicted schematically
in Figs. 1a–c and are addressed theoretically in sections
2–4. More detailed simulations of wave spreading fol-
low in later sections.

2. Refraction by a stationary background
wind U(z)

We begin by reconsidering the standard problem of
a linear, small amplitude, plane gravity wave, with initial
parameters m0 (vertical wavenumber), v0 (intrinsic fre-
quency), and K0 (horizontal wavenumber), which prop-
agates upward through a larger-scale height-varying
background zonal velocity field U(z), as depicted sche-
matically in Fig. 1a. We refer to this wave hereafter as
the short wave, for reasons that become clearer in sec-
tion 3. For simplicity, we assume that the background
Brunt–Väisälä frequency N, Coriolis parameter f, and
density scale height Hr are constants.

Since ]U/]t 5 Ut 5 0, then V, the frequency of the
short wave as measured from the ground, remains con-
stant (e.g., Jones 1969). Since Ux 5 Uy 5 0 and f is
assumed to be constant, then the short wave’s horizontal
wavenumber K remains constant so that K 5 (k2 1
l2)1/2 5 K0 (e.g., Eckermann 1992). Thus the ground-
based horizontal phase speed cx 5 V/K also remains
constant. The short-wave velocity perturbation is plotted
in Fig. 1a oscillating about its constant cx value.

The intrinsic frequency of the short wave at any
height z is given by the conventional Doppler relation

v(z) 5 V 2 KU(z) cosw, (1)

where w is the azimuth subtended by K 5 (k, l) 5
K(cosw, sinw). On propagating from height z0 to z1, v
varies as
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FIG. 1. Schematic vertical profiles showing a ‘‘short’’ gravity wave
of horizontal phase speed cx and vertical group velocity cgz propa-
gating upward through (a) a background horizontal velocity profile
U(z); (b) a ‘‘long’’ wave velocity oscillation, which remains vertically
stationary and has a vertical wavelength of Dz; and (c) a ‘‘long’’
wave, as in (b), but which propagates with a vertical phase velocity
(cz)lw. In all three cases, the wind varies within the limits 2Umax #

U(z) # Umax over the height interval Dz.

v(z ) 5 v(z ) 2 K[U(z ) 2 U(z )] cosw,1 0 1 0

5 v(z ) 2 KDU cosw. (2a)0

For simplicity, we confine wave propagation hereafter
to the x–z plane so that w 5 08 or 1808 and cosw 5
61, whereupon (2a) simplifies to

v(z1) 5 v(z0) 2 kDU, (2b)

where k 5 K cosw 5 6K0.
The vertical wavenumber m(z) responds to the shifts

in v(z) through the dispersion relation
2 2 2k [N 2 v (z)]

2 2m (z) 5 2 a , (3a)
2 2v (z) 2 f

where a2 5 1/(4 ), and acoustic and forcing terms2Hr

have been omitted (e.g., Marks and Eckermann 1995).
To aid a more general analysis in section 3, it proves

convenient to nondimensionalize wave variables at this
point. We define dimensionless frequencies N̂ 5 N/| f|
and 5 v/| f| (so that 1 , , N̂ 2) and dimensionless2v̂ v̂
wavenumbers, m(z) 5 m/mc and k 5 k/mc. Here mc is
an arbitrary constant wavenumber, which we use to non-
dimensionalize the problem: it assumes greater signif-
icance when these formulas are applied in section 3 to
the Doppler-spreading problem, where it corresponds
approximately to the cutoff wavenumber derived by
Hines (1991b). Thus, (3a) now becomes

2 2 2ˆk [N 2 v̂ (z)]
2 2m (z) 5 2 â , (3b)

2v̂ (z) 2 1

where 5 a/mc.â
Since k is constant, the refraction of wave parameters

is completely specified by the frequency variations giv-
en by (2) and the ensuing m variations implied by (3).
Thus refraction effects are conveniently summarized by
simultaneously plotting variations of the normalized
variables (m, ), an approach we adopt throughout thisv̂
paper.

Figure 2 plots a (|m|, ) space using mc 5 2p (2.5|v̂|
km)21, N̂ 5 203, and f evaluated at 458N. Logarithmic
axis scales are chosen for |m| and since gravity wave|v̂|
energy spectra are usually plotted in this fashion. The
dotted curves in Fig. 2 interconnect the various (|m|,

) pairings that satisfy the dispersion relation (3b) for|v̂|
a given (constant) horizontal wavenumber k. Hence,
hereafter we refer to these dotted curves synonymously
as either dispersion curves or k curves. The |k| values
are labeled on selected curves in Fig. 2. Note that these
dispersion curves tend to flatten at |m| & 0.04 and also
at the frequency limits → N̂ 2 and → 1. Elsewhere2 2v̂ v̂
the curves appear linear, which indicates that the mid-
frequency approximation 1 K K N̂ 2 is accurate and2v̂
(3b) can be simplified to

ˆkN
|m| ø . (4)) )v̂

Combining (2b) and (4) then yields
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FIG. 2. Dotted curves show the locus of (|m|, ) values satisfying|v̂|
the dispersion relation (3b) for a given value of |k|. Values of |k| are
labeled on selected curves. On moving to the right, successive curves
increase in |k| value by a factor of 100.2. Five waves are depicted with
symbols at their initial (unrefracted) parameter values (|m0|, ), and|v̂ |0

the solid curves show the variations of these parameters as back-
ground velocities U(z) varied within the range 68.3 m s21 (21 # b
# 1). Values of mc 5 2p (2.5 km)21 and N̂ 5 203 were used at a
latitude of 458N.

DUmc21 21 21m (z ) 5 m (z ) 2 5 m (z ) 2 b, (5)1 0 0N

where b encapsulates both the sense and magnitude of
the short wave’s refraction. This same b term arises in
spectral studies of shifting of gravity wave parameters
by a steady background wind (e.g., Fritts and VanZandt
1987; Gardner et al. 1993; Fritts and Lu 1993; Ecker-
mann 1995). Substituting b back into (2b) yields

5 2 kN̂b.v̂(z ) v̂(z )1 0 (6)

Note from (5) that, in the midfrequency range, the
amount of refraction b can be quantified solely through
the change in the wave’s vertical wavenumber m, an
approach used to quantify refraction effects in some
previous spectral studies (Hines 1991b, 1993b; Fritts
and Lu 1993). This does not, however, diminish the
importance of the accompanying changes in givenv̂,
by (6). We shall focus on this aspect of the problem in
more depth later.

To illustrate these refraction effects, we consider five
different short waves, each launched separately from a
starting height z0 and represented in Fig. 2 by a symbol
at their initial (DU 5 0) parameter values (|m0|, ).|v̂ |0

Each wave propagated into an environment where the
background wind varied within the range 2Umax # U(z)
# Umax over a height interval, Dz, as depicted in Fig.
1a. We choose U(z0) 5 0 and Umax 5 8.3 m s21, so that

bmax 5 Umaxmc/N 5 1. Solid curves in Fig. 2 show the
variations in |m| and that resulted for each wave.|v̂|

We see in all cases that the (|m|, ) variations follow|v̂|
the relevant dispersion curve, but that those waves with
larger |m0| values experience greater excursions through
(|m|, ) space. Indeed, the wave represented with a|v̂|
square symbol in Fig. 2 is refracted to a Jones critical
level [ 5 1: Jones (1967)], and so is removed during2v̂
propagation through this wind profile (assuming critical-
level absorption). The wave depicted with an asterisk
is refracted to a critical level wherever U(z) * 1 m s21.
At heights where U(z) & 21 m s21, this same wave is
also refracted to a turning (reflection) level $ ,|v̂| v̂c

where is the high-frequency cutoff [ ø N̂ for |m|v̂ v̂c c

* 0.04: see Marks and Eckermann (1995)]. Whether a
critical level or turning level occurs first depends on the
shear profile Uz(z), but either way this wave does not
emerge at z 5 z0 1 Dz when background wind variations
of this magnitude are present.

3. Doppler spreading

We now ascribe the velocity variations 2Umax # U(z)
# Umax to one full vertical cycle of a ‘‘long’’ (small |m|)
gravity wave oscillation of peak horizontal-velocity am-
plitude Umax and negligible vertical-velocity amplitude.
This situation is depicted in Fig. 1b. Since the formulas
in section 2 assumed Ut 5 Ux 5 Uy 5 0, this interpre-
tation assumes that the velocity structure of the long
wave acts like a stationary background flow velocity
U(z) in refracting any given short wave that propagates
through it, and thus follows Approximations 1 and 2
from section 1 (Hines 1993b).

We denote the normalized parameters of the long
wave by mlw, klw, and . Our assumptions Ut 5 Ux 5v̂lw

Uy 5 0 imply that the long wave’s velocity oscillation
can be approximated by

U(z) 5 U (z) 5 U sin(m z 1 q ), (7)lw max lw lw

where mlw 5 mcmlw and qlw is the phase at z 5 0 (taken
to be zero here; see Fig 1b). We also stipulate that

k so that wave velocity variances do not change2 2m âlw

appreciably over one vertical wavelength due to density
reductions with height.

The resulting refraction of short-wave parameters (m,
v) induced by the velocity structure (7) of the long wave
is a two-wave deterministic analog of the statistical
Doppler spreading among a random spectrum of gravity
waves modeled by Hines (1991b, 1993b). Since the gov-
erning formulas do not differ from those presented in
section 2, the solid curves in Fig. 2 can be reinterpreted
here as specifying the (deterministic) Doppler spreading
of these five short waves by one cycle of the long-wave
oscillation in Fig. 1b.

To study this Doppler spreading of short waves in
more detail, Fig. 3 extends Fig. 2 by summarizing results
for a large number of short waves spanning a wide range
of initial pairings (|m0|, ). As in Fig. 2, Umax 5 8.3|v̂ |0
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FIG. 3. As in Fig. 2 but in this case only symbols are shown at the
(|m0|, ) point for the waves. These symbols summarize the end|v̂|
result of imposing refraction within the range 21 # b # 1. Solid
circles denote free propagating waves, triangles depict waves that
encounter turning levels, squares denote waves that reach critical
levels, and asterisks denote waves that can encounter either critical
or turning levels. No free propagating waves exist at |m0| . 1: the
line |m0| 5 1 is shown with a broken curve for reference.

m s21, so that 21 # b # 1, and the symbol plotted at
each (|m0|, | ) point denotes the fate of the short wave.v̂ |0

Waves represented by filled circles propagate through
the interval Dz, while the other symbols denote waves
that cannot. The triangular symbols clustered near the
top left of Fig. 3 indicate waves that are refracted to
turning levels ( 5 ), while square symbols show2 2v̂ v̂c

waves that are refracted to critical levels ( 5 1). As-2v̂
terisks identify waves that can be refracted either to a
critical level or to a turning level, depending on the
long-wave shear profile.

a. Cutoff vertical wavenumber mc

Note that all short waves for which |m0| $ 1 (|m| $
mc) are refracted to critical levels by the long wave (a
dot-dashed line at |m| 5 1 is plotted in Fig. 3 for ref-
erence). Given that bmax 5 1, this follows directly from
(5). This is a simplified replication of a more general
statistical result derived by Hines (1991a,b; 1993b), who
predicted a cutoff in unshifted wavenumbers at |m0| ;
1 when bmax ; 1 due to the high probability of Doppler
spreading of |m0| . 1 waves beyond a dissipative high-
wavenumber limit mM 5 mM/mc. Hines also proposed
that waves at |m| . mM were obliterated (approximation
3), which, he argued, acted to relax any interacting wave
spectrum for which bmax . 1 to an equilibrium value
of bmax ; 1. This in turn produced a Doppler-spread

vertical wavenumber spectrum that peaked at |m| ø mc

(|m| ; 1) (Hines 1991b).

b. Cutoff horizontal wavenumber kc ø mc /2

Figure 3 also reveals a cutoff horizontal wavenumber,
kc, beyond which all waves are either absorbed at critical
levels or vertically reflected at turning levels. This can
be seen by starting at the bottom left of Fig. 3 and
moving upward toward the |m| 5 1 line, so that suc-
cessively encountered dispersion curves increase in their
|k| value. Eventually a k curve is encountered on which
there are no filled circles (i.e., no waves which propagate
freely through the interval Dz). Closer inspection reveals
that this occurs at |k| 5 kc ø 0.5.

This feature of the solutions is easily explained by
noting that, according to (6) and the dispersion relation
(3b), freely propagating short waves (0 , |m| , `) must
satisfy the inequality

1 , ( 2 kN̂b)2 , N̂ 2,v̂0 (8)

assuming ø N 2 for sufficiently large |k| (Marks and2v̂c

Eckermann 1995). If N̂ 2 k 1, as is usually the case in
the middle atmosphere, then it follows from (8) that,
once

|kN̂bmax| ø N̂/2, (9)

no choice of in (8) can prevent refraction of thisv̂0

wave either to a critical level or to a turning level as
the velocity oscillation of the long wave varies b over
the range 2bmax # b # bmax. Since bmax 5 1 in Fig. 3,
then (9) yields no freely propagating waves at |k| $ kc

ø 0.5, as evident in Fig. 3. Given the Hines (1991b)
arguments that Doppler-spread spectra converge to an
equilibrium of bmax ; 1, then our finding of kc ø 0.5
for bmax 5 1 illustrates that a cutoff horizontal wave-
number kc ø mc/2 is also predicted by the Doppler-
spread model of Hines (1991b, 1993b), as extended
here.

The ‘‘case III’’ model of oceanic gravity waves of
Allen and Joseph (1989) predicted M23 and K 23 spectra
beyond hypothesized Eulerian cutoff wavenumbers Mc

and K c, respectively, where K is the one-dimensional
horizontal Fourier wavenumber (see also Chunchuzov
1996). On quantifying Mc in the atmosphere using
Doppler-spread theory (i.e., Mc ; mc), Hines (1991b,
1993b) cited their findings as evidence that a fully gen-
eralized Doppler-spread theory should yield M23 spectra
at M k mc as observed. Spectral analysis of high-res-
olution velocity and temperature data from stratospheric
aircraft by Bacmeister et al. (1996) revealed a clear
transition from shallower power-law spectra at smaller
horizontal wavenumbers to K 23 spectra at large K . This
transition occurred at a wavenumber of ;2p (5 km)21,
which is of the order of kc 5 mc/2 at these heights (e.g.,
Tsuda et al. 1991; Allen and Vincent 1995). Bacmeister
et al. (1996) noted that separable linear spectral models
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also predict the observed spectral shapes and transition
point quite well (kc 5 mc in these models).

c. Approximation 1 and the ‘‘longness’’ criterion

Hines (1991b, 1993b) employed Approximation 1 to
model Doppler spreading among waves of all wave-
lengths and arbitrary amplitudes, without testing this
approximation in any formal way. As a necessary first
condition for Approximation 1 to hold, we imposed
scale separation between the long and short wave
through a longness criterion |mlw| K |m0| and thereafter
assumed that the approximation was valid. Yet |mlw| K
|m0| is well satisfied when |klw| k |k| and/or k|v̂ |lw

, whereas Approximation 1 requires the long wave|v̂ |0

to appear approximately stationary and horizontally in-
variant to the short wave, which requires (at least) that
|klw| K |k| and K . Thus, a better longness|v̂ | |v̂ |lw 0

criterion is |klw| K |k|, since this usually also ensures
that both |mlw| K |m0| and K . We impose this|v̂ | |v̂ |lw 0

hereafter, so that the long wave must now lie in the
bottom left region of Figs. 2–3, and initial short-wave
values (|m0|, ) must lie to the right and above this|v̂ |0

(|mlw|, ) point in Figs. 2–3.|v̂ |lw

However, even in these cases Approximation 1 may
not be valid. For example, in sections 2 and 3 our initial
longness criterion |mlw| K |m0| in no way justified ne-
glecting the Uz variations of the long wave that refracted
the short wave. In the same way, |klw| K |k| and |v̂ |lw

K do not automatically imply that Ux and Ut terms|v̂ |0

can be ignored in computing the propagation of the short
wave (Approximations 1c and 1b, respectively). How-
ever, since Approximation 2 is usually assured by our
longness criterion (e.g., Eckermann and Marks 1996;
see also section 9), we can use WKB ray theory to trace
any given short wave through a long wave without dis-
carding the horizontal and temporal oscillations of the
long wave, thereby assessing directly the validity of
Approximation 1. We pursue this in the following sec-
tions.

4. Short-wave ray solutions in the presence of a
propagating long wave

In tackling this problem, we consider again the ide-
alized background atmosphere described in section 2.
As in section 3, the background velocity is produced by
a long wave of constant and steady amplitude. We allow
this long wave to propagate upward through the at-
mosphere as an infinite wave train with (constant) pa-
rameters mlw, vlw, and Klw, which satisfy the dispersion
relation (3a). We set mlw , 0 and vlw . 0 so that the
vertical phase velocity is downward ((cz)lw , 0) and
vertical group velocity is upward ((cgz)lw . 0). We also
confine long-wave propagation along the x axis so that
Klw 5 klw and the phase of the long wave is given by

u (x, z, t) 5 k x 1 m z 2 v t 1 q , (10)lw lw lw lw lw

since Vlw 5 vlw here.
We launch the short wave from a position (x0, z0), at

a time t0 when ulw(x0, z0, t0) delivers a node in the long
wave’s velocity oscillation (see section 4b). This situ-
ation is profiled vertically in Fig. 1c, where the prop-
agation of the long wave is depicted by arrowing its
downward vertical phase velocity (cz)lw.

a. Wave action equation

We omit damping from this problem, following Ap-
proximation 3, so that the long wave and short wave
both conserve wave action. For the short wave,

]A
1 = · [(U 1 c )A] 5 0, (11)g]t

where A 5 E/v is the short wave’s action density, E is
its total energy density, U is the background velocity,
and cg 5 (cgx, cgy, cgz) is the intrinsic group velocity of
the short wave (Andrews and McIntyre 1978).

b. Velocity oscillation of the long wave

A wave action solution for the long wave that remains
valid in a vertically varying background velocity field is

(Bz)lw 5 (cgz)lwAlw 5 const, (12)

where (Bz)lw is the vertical flux of long-wave action
density (e.g., Schoeberl 1985). As in section 3, we as-
sume k , whereupon the background density r2 2m âlw

is approximately constant across the interval Dz in Fig.
1c. This in turn yields, through (12), an approximately
constant peak horizontal velocity amplitude Umax, and a
long-wave velocity oscillation, Ulw(x, z, t) 5 (Ulw(x, z,
t), Vlw(x, z, t), Wlw(x, z, t)), given by

U (x, z, t) 5 U sinu (x, z, t) (13a)lw max lw

2 f
V (x, z, t) 5 U cosu (x, z, t) (13b)lw max lw1 2vlw

2klwW (x, z, t) 5 U sinu (x, z, t) (13c)lw max lw1 2mlw

(e.g., Gossard and Hooke 1975). We ignore influences
of the temperature and density perturbations of the long
wave on the propagation of the short wave since they
are usually minor (e.g., Henyey and Pomphrey 1983;
Zhong et al. 1995; Eckermann and Marks 1996).

The velocity oscillation of the long wave along the
x–z plane is depicted in Fig. 4, extending the simple
one-dimensional depiction of the problem in Fig. 1c.
The phase fronts of the long wave lie along the x9 axis
and move downward with time along the z9 axis at the
phase speed Clw 5 2|clw|, where clw is the phase velocity.
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FIG. 4. Contour plot of a sample long-wave velocity oscillation (with contour labels in m s21

and phases of negative velocities shaded). This wave has a peak velocity amplitude of 11 m s21.
Various vectors on the plot show the long wave’s wavenumber (klw, 0, mlw), its velocity perturbation
along the x–z plane, (Ulw, 0, Wlw), its group velocity (cg)lw, and its phase velocity clw. The rotated
axes (x9, z9) are explained in the text. A short gravity wave of wavenumber (k, 0, m) is depicted
at the bottom left impinging upon this long wave.

c. Ray equations for the short wave

The short wave is depicted in the bottom left of Fig.
4, and we use ray equations to compute its propagation
through the long wave. Its wavenumber components are
governed by the refraction equations (e.g., Jones 1969)

dk ]U ]Wlw lw5 2k 2 m (14a)
dt ]x ]x

dm ]U ]Wlw lw5 2k 2 m , (14b)
dt ]z ]z

where d/dt is time differentiation following the group
motion of the short wave. The wavenumber vector (k,
l, m) is again taken to be zonally aligned (l 5 0) and
remains so since ]Ulw/]y 5 0 and, thus, dl/dt 5 0. The
time variation of the long-wave background yields an
additional short-wave ray equation (e.g., Jones 1969;
Eckermann and Marks 1996)

dV ]U ]Wlw lw5 k 1 m , (15)
dt ]t ]t

where V is the ground-based frequency of the short
wave.

d. Transformation to the ‘‘long-wave frame’’

Solutions of the short-wave ray equations in this case
follow on reformulating the problem within a reference
frame that moves with the phase of the long wave. First,
we transform to the rotated coordinate axes (x9, z9) in
Fig. 4, where

x9 cosz 2sinz x
5 , (16)1 2 1 21 2z9 sinz cosz z

and z 5 arctan(2klw/mlw) is the elevation of the long
wave’s phase fronts above the horizontal plane. Since there
are no long-wave phase variations along x9, then, when
viewed from this frame, the phase (10) transforms to

totu9 (z9, t) 5 m9 z9 2 vt 5 2K z9 2 vt, (17a)lw lw lw

where is the wavenumber component along z9,m9lw
which equals the total wavenumber 5 ( 1tot 2K klw lw
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)1/2 in magnitude but is negative ( 5 2 since2 totm m9 K )lw lw lw

the long-wave phase moves downward along z9 at the
phase velocity Clw 5 2vlw/ 5 vlw/ . Thus (17a)totK m9lw lw

can be reexpressed as

(z9, t) 5 (z9 2 Clwt).u9 m9lw lw (17b)

Given a general Galilean transformation to another
similarly tilted nonaccelerated reference frame

(x0, y0, z0) 5 (x9, y9, z9) 2 Vt, (18)

then choosing V 5 (0, 0, Clw) in (18) transforms to a
new frame (x0, z0) that has the same orientation as (x9,
z9) in Fig. 4 but moves downward along z9 at the long-
wave phase velocity Clw.

We refer to (x0, z0) for V 5 (0, 0, Clw) as the long-
wave frame since it is oriented with the phase fronts of
the long wave and follows their movement. Since z0 5 z9
2 Clwt, then from (17b) the long-wave phase is given by

(z0) 5 z0 5 2 z0,totu0 m9 Klw lw lw (19)

and so the velocity oscillation of the long wave remains
stationary within this long-wave frame. Due to the trans-
verse nature of the long-wave oscillation along the x–z
plane, its phase varies only along z0, while its velocity
oscillates along the x0 (5x9) axis (see Fig. 4), and thus
(13a) and (13c) transform and then combine to yield

(z0) 5 Umax sin (z0),U0 u0lw lw (20)

where (z0) is the velocity along the x0 axis, and UmaxU0lw
is the peak total velocity amplitude of the long wave
in the x–z plane and equals Umax[1 1 (klw/mlw)2]1/2 5
Umax|secz|. The remaining velocity component (13b),
which does not influence short-wave propagation, os-
cillates orthogonal to the page in Fig. 4, producing el-
liptical orbits in the x–y plane.

e. Ray solutions for the short wave

Next we transform the ray and action equations for
the short wave to the long-wave frame (x0, z0). Since A
is invariant under Galilean transformations (e.g., Grim-
shaw 1984), then, using (20), the continuity equation
for action density (11) takes the form

]A ] ]
1 ([U0 1 c0 ]A) 1 (c0 A) 5 0 (21)lw gx0 gz0]t ]x0 ]z0

in the long-wave frame, where and are compo-c0 c0gx0 gz0

nents of the short wave’s group velocity along x0 and
z0, respectively. Since the long wave produces gradients
along z0 alone, according to (19) and (20), then the first
two terms in (21) vanish, giving the solution (Thorpe
1989; Eckermann and Marks 1996)

B0 5 c0 Az0 gz0

5 {(c cosz 2 c sinz) 2 C }A 5 const. (22)gz gx lw

Thus the flux of short-wave action density along z0,
, is conserved.B0z0

In the long-wave frame the ray equations (14)–(15)
become

dk0 ]U0lw5 2k0 5 0 (23a)
dt ]x0

dm0 ]U0lw5 2k0 (23b)
dt ]z0

dV0 ]U0lw5 k0 5 0, (23c)
dt ]t

where k0 and m0 are the wavenumber components of the
short wave along x0 and z0 respectively, which relate to
those along x and z according to

k0 cosz sinz k
5 , (24)1 2 1 21 2m0 2sinz cosz m

and V0 is the short-wave frequency in the long-wave
frame, which relates to V through the standard Doppler
relation

V0 5 V 2 Clwm0. (25)

Equations (23a) and (23c) vanish according to (20)
so that k0 and V0 are both constants during propagation
through the long wave. The remaining ray equation
(23b) is redundant since m0 follows from the dispersion
relation (3), so that

2 2v 5 (V0 1 C m0 2 k0U0 )lw lw

2 2 2 2 2k N 1 (m 1 a ) f
5 . (26)

2 2 2k 1 m 1 a

f. Simplifications for |klw| K |mlw| (z → 0) as a test of
Approximation 1b

Our amended longness criterion of section 3c was
|klw| K |k|, so that |vlw| K |v| and |mlw| K |m|. The
implied low frequency of the long wave also implies
(klw/mlw)2 5 tan2z K 1 through the dispersion relation
(3a), and thus z ø 0.

Thus, to simplify our analysis of these short-wave
solutions, we consider first the inertial limit z 5 0, which
eliminates horizontal variations of the long-wave os-
cillation (klw → 0) but retains its temporal oscillation.
The velocity oscillations of the long wave now become
purely horizontal, and the long-wave phase moves
downward along z at the vertical phase velocity (cz)lw,
consistent with the simplified depiction in Fig. 1c. This
invokes approximations 1a and 1c but not approxima-
tion 1b, and thus allows us to isolate and test approx-
imation 1b.

The short-wave solutions now simplify to those de-
rived by Broutman and Young (1986). The wave action
solution (22) becomes

[cgz 2 (cz)lw]A 5 const. (27)

The horizontal wavenumber k is constant, and
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V0 5 V 2 (cz)lwm 5 const, (28)

while m is determined by the dispersion relation
2 2v 5 (V0 1 (c ) m 2 kU )z lw lw

2 2 2 2 2k N 1 (m 1 a ) f
5 . (29)

2 2 2k 1 m 1 a

Solving (29) for m yields a quartic polynomial with two
real and two imaginary roots for free-propagating
waves, and the relevant real root for m is easily iden-
tified. The general form of these solutions for m can be

illustrated by adopting the midfrequency approximation
(4) so that (29) simplifies to

v(z, t) 5 V0 1 (c ) m(z, t) 2 kU (z, t)z lw lw

kN
5 2 . (30)

m(z, t)

The minus sign on the right-hand side of (30) is inserted
to ensure downward vertical phase propagation for neg-
ative m and positive v. Solving for m in (30) yields a
quadratic with roots (Broutman and Young 1986).

2 1/22[V0 2 kU (z, t)] 6 {[V0 2 kU (z, t)] 24kN(c ) }lw lw z lwm(z, t) 5 . (31)
2(c )z lw

Since (cz)lw , 0, the discriminant in (31) is always pos-
itive, so solutions always exist. This is not always so
in the full quartic solution, where solutions are imagi-
nary when the wave is refracted to a turning level (v2

. ). The negative (cz)lw also ensures one positive and2vc

one negative root for m in (31), and we choose the latter
since we set m , 0 initially.

5. Limiting behavior of the z 5 0 short-wave
solutions

We now consider two asymptotic limits of the sim-
plified (z 5 0) short-wave solutions of section 4f. In
defining these limits, it proves useful to introduce the
ratio

2cgzr 5 , (32)
(c )z lw

which we call the phase–group ratio. The wave action
solution (27) can now be reexpressed as

212(c ) A(r 1 1) 5 c A(1 1 r )z lw gz

215 B (1 1 r ) 5 const, (33)z

where Bz 5 Acgz is the vertical flux of short-wave action
density.

a. The ‘‘fast’’ limit: r k 1, r → `

For r k 1, then cgz k 2(cz)lw and so the short-wave
packet propagates upward much faster than the down-
ward moving long-wave phase fronts. Thus, the time
that the short wave takes to propagate through one ver-
tical wavelength of the long wave is very much less
than the period of the long wave.

‘‘Fast limit’’ solutions follow by letting r → `, where-
upon the solutions of section 4f reduce to those of sec-
tion 3. Equation (33) simplifies to the familiar conser-

vation with height of Bz 5 cgzA (e.g., Schoeberl 1985),
the same solution that governs the amplitude of the long
wave in section 4b and of waves in Doppler-spread the-
ory (Hines 1991b). Similarly, (cz)lwm becomes negli-
gibly small in this limit, whereupon (28) and (29) reduce
to the original equations (1) and (3a) that we used in
section 3 to model spreading effects initially.

Thus the longness criterion of section 3c is a nec-
essary but insufficient condition for Approximation 1b
to hold. We see here that r must also remain sufficiently
larger than unity in order for the short-wave solutions
of section 4f to be approximated acceptably by the r →
` solutions of Approximation 1.

b. The ‘‘slow’’ limit: 0 , r K 1, r → 0

For cgz K 2(cz)lw and thus 0 , r K 1, the vertical
group propagation of the short wave is much slower
than the speed of the long-wave phase fronts. Thus, the
vertical distance travelled by the short wave during one
period of the long wave is very much less than the
vertical wavelength of the long wave. This is easily seen
from Fig. 1c: the long wave propagates its phase rapidly
through the short wave for cgz K 2(cz)lw, so that many
long-wave cycles pass through the short wave as it prop-
agates slowly upward through the interval Dz.

In the slow limit r → 0, the ray equations (14a) and
(14b) vanish so that m, k, and hence v remain constant
for the short wave, as originally discussed by Jones
(1969) (see also Zhong et al. 1995; Eckermann and
Marks 1996). From (33), (cz)lwA remains constant; since
(cz)lw is also constant in this problem, then

A 5 const. (34)

Thus, if short waves were to near this slow limit, then
little short-wave refraction would occur and waves
would tend to conserve their action densities A (see also
Broutman et al. 1997).
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FIG. 5. Schematic contour plot of an upward propagating long-wave velocity oscillation as a
function of time t and height z, with each axis spanning one long-wave cycle. The thick linear
arrows show the hypothetical time–height history of a short-wave trajectory through the long
wave implied by the ‘‘fast limit’’ and ‘‘slow limit’’ solutions, which short-wave solutions might
approach but never attain. The curved black arrow depicts the time–height locus of a typical
short-wave trajectory through the long wave (e.g., Fig 2 of Eckermann and Marks 1996).

For upward propagating waves, it can be shown that
the refraction of any given short wave by a long wave
always lies somewhere between (but never equals) these
fast and slow limits. Of course, most short-wave solu-
tions differ significantly from either limit, as shown in
Fig. 5, since changes in m, V, and v are all significant
during propagation (see also Eckermann and Marks 1996).
This is investigated in more depth in sections 6–8.

c. The ‘‘antipropagating’’ solutions: r , 0

When r , 0 and cgz and (cz)lw have the same sign,
the long wave and short wave propagate in opposing
vertical directions. In this case, the range of refraction
of short-wave parameters by the long wave can exceed
the fast limit described above, as discussed by Ecker-
mann and Marks (1996).

This situation is more relevant to gravity waves in
the ocean, where upward propagating and downward
propagating gravity waves coexist with approximately
equal energies (e.g., Munk 1981; D’Asaro and More-
head 1991). Here, the ‘‘phase–group condition’’ cgz 5
(cz)lw (r 5 21) in particular has received considerable
attention, initially because it was where certain resonant
wave–wave interactions were thought to interchange
wave action most efficiently (e.g., McComas and Breth-
erton 1977). The phase–group condition produces A →

` according to (33) and is a caustic where ray theory
fails (Broutman 1986). Using a midfrequency approx-
imation, r 5 21 occurs when V0 2 kUlw(z, t) → 0
(Broutman and Young 1986), so the mathematical con-
dition for the singularity resembles a critical-level-type
condition as viewed within the long-wave frame: in-
deed, the conventional critical level follows from these
solutions as (cz)lw → 0. However, phase–group caustics
differ physically from critical levels in that m remains
finite [see (31)], and short waves can survive these en-
counters. Accurate analysis of these events requires an
extended ray theory that deals properly with the caustic
singularity (e.g., Broutman 1986; Broutman et al. 1997).

Since gravity wave variance is dominated by upward
propagating (r . 0) waves (e.g., Hirota and Niki 1985;
Eckermann et al. 1995), antipropagating solutions are
less immediately relevant to the atmosphere, and so we
confine attention in the remainder of the paper to r .
0 solutions. Nevertheless, short waves undergoing suc-
cessive reflections at turning levels may experience
some of these antipropagating interactions with long
waves during the downward portions of their group
propagation. For example, the ‘‘separatrix crossings’’ at
phase–group caustics (Broutman and Young 1986; Bruh-
wiler and Kaper 1995) resemble aspects of the Eckart’s
resonances for ducted modes considered by Fritts and
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FIG. 6. A reproduction of Fig. 2, with contours of constant cgz values
plotted with thick broken curves and contour labels in meters per
second. A sample long wave of (cz)lw 5 21 m s21 is also shown on
this plot. Thus, if we assume that this long wave refracts the short
waves, the contours can also be interpreted as phase/group ratios r
for the short waves.

FIG. 7. As in Fig. 2 but in this case the short-wave refraction was
computed using the z 5 0 short-wave solutions of section 4f assuming
a long wave of (cz)lw 5 21 m s21.

Yuan (1989). We also show in appendix A that upward
propagating gravity waves may undergo similar sorts of
caustic interactions in environments where the mean
flow has a downward component.

d. Phase–group ratios of refracted short waves

Figure 6 reproduces the refraction of the five short
waves in Fig. 2, which used the solutions of section 3.
A sample long wave is depicted in Fig. 6 with a shaded
circle and is positioned to the left and below the initial
position of the three largest-|m0| short waves, thereby
satisfying longness criteria for these waves initially.
This long wave has a vertical phase speed (cz)lw 5 21
m s21, and we assume that the short waves in Fig. 6
were refracted by it.

The labeled broken curves in Fig. 6 are contours of
constant vertical group velocity cgz. As the short waves
are refracted to larger |m| values, they intersect contours
of progressively smaller cgz values. Since (cz)lw 5 21
m s21, then from (32) these contours can be interpreted
here as r values for these short waves. Clearly, as short
waves are refracted by the long wave to |m| k 1, then
0 , r K 1, and so, if anything, they tend more towards
the slow limit of section 5b rather than the fast limit r
k 1 that was implicitly assumed when computing their
refraction in section 3.

This result, together with the findings of section 5a,
reveal that approximation 1b fails for the short waves
at both large and intermediate |m| values. In light of this,

we now recompute the refraction of short waves using
the z 5 0 shortwave solutions of section 4f that do not
use approximation 1b.

6. Shortwave refraction by a vertically
propagating long wave

Figure 7 displays the five short waves previously con-
sidered in Figs. 2 and 6. Here, their refraction was com-
puted using the ray solutions in section 4f, assuming a
long-wave phase speed (cz)lw 5 21 m s21, as in Fig. 6.
Given initial short-wave parameters (m0, v0) at the node
of the long-wave velocity oscillation, then, from (29),
v varies as

v 5 v 2 kU 1 (m 2 m )(c ) , (35)0 lw 0 z lw

while m varies so as to satisfy the dispersion relation
(3a).

We note immediately from Fig. 7 that the range of
short-wave refraction is reduced substantially compared
to Fig. 2. This is consistent with the inferences from
Fig. 6, where waves at |m| k 1 tended toward 0 , r
K 1, and so their refraction characteristics should more
closely resemble the slow limit solutions of section 5b,
in which no variation of short-wave parameters occurs.

This suppression of short-wave refraction can also be
understood on inspecting (35). As short waves are re-
fracted to |m| . |m0|, then 2kUlw is negative (since v
must decrease) but (m 2 m0)(cz)lw is positive [recall that
m, m0, and (cz)lw are all negative]. Thus, the feedback
effect of the latter term in (35) reduces the refraction
compared to (2b). Similarly, when 2kUlw is positive
and |m| , |m0| in (35), then (m 2 m0)(cz)lw is negative,
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FIG. 8. As in Fig. 3 but using the z 5 0 short-wave solutions of section 4f assuming a long wave of (a) (cz)lw 5 210 m s21, (b) (cz)lw 5
21 m s21, (c) (cz)lw 5 20.1 m s21, and (d) (cz)lw 5 20.001 m s21. The |(cz)lw| isoline is shown with a broken curve, and so the long wave
must lie somewhere along it in each case. The critical-level criterion is replaced here with a dissipative criterion, |m| $ mM 5 200.

which again reduces the refraction in (35) compared to
(2b).

The feedback term (m 2 m0)(cz)lw also produces
changes in the ground-based frequency V, according to
(28) (since V0 is constant). These changes oppose the
changes in v due to the long-wave velocity Ulw. Note
that the feedback term is limited in magnitude as m →
0 and so cannot ultimately prevent turning levels. How-
ever, as m → `, then (m 2 m0)(cz)lw → `, which from
(29) ensures that critical levels do not occur: the ac-
celerations of the long-wave oscillation always refract
short waves away from a Jones critical level (v 5 f )
(Eckermann and Marks 1996).

Thus, in repeating the presentation of Fig. 3 using
these short-wave ray solutions, a critical-level criterion
is no longer relevant. We replace it by following Ap-
proximation 3 of Hines (1993b) and introducing a max-
imum wavenumber mM, beyond which waves are dis-
sipated completely into turbulence. A value of mM 5
200 is adopted from section 4 of Hines (1991b).

Figure 8 shows four plots, each depicting the end
result of subjecting short waves to a long-wave velocity
oscillation Ulw in the range 68.3 m s21 (bmax 5 1), for
which the theory of section 3 predicted a sharp cutoff
at |m0| ; 1. In each plot, a different value of (cz)lw was
used: (a) 210 m s21, (b) 21 m s21 (as in Figs. 6–7),
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(c) 20.1 m s21, and (d) 21023 m s21. The |(cz)lw| isoline
is shown with a broken curve on each plot, and the long
wave must lie somewhere along it in each case. The
line |m| 5 mM is also shown.

Clearly the results in Figs. 8a–c differ substantially
from those in Fig. 3. In Fig. 8a, the characteristics at
|m| , mM are nearly independent of |m|, with free prop-
agating short waves occurring everywhere except at

* 150. In Fig. 8b [(cz)lw 5 21 m s21], a collection|v̂ |0

of waves appear at 1 * |m0| * 100 that are now reflected
at turning levels by the long wave. For (cz)lw 5 20.1
m s21 in Fig. 8c, we now see that waves for which |k|
* 100.3 can no longer propagate freely. Note, however,
that there is still no evidence of a short-wave cutoff at
|m0| ; 1—many free-propagating short waves still exist
at |m0| k 1. Only as (cz)lw → 0 do characteristics re-
sembling those in Fig. 3 return in Fig. 8d (since r k
1). However, the |(cz)lw| isoline in Fig. 8d, on which the
long wave must lie, yields |mlw| k 1, whereupon the
longness criterion is violated for most short waves on
this diagram.

Thus we conclude that incorporating the vertical
propagation of the long wave removes any tendency for
a distinct cutoff in free-propagating short waves at |m0|
; 1 when maximum normalized long-wave wind vari-
ations of bmax 5 1 are present, in contrast to the findings
of Doppler-spread theory. Note, however, that the Dopp-
ler-spread analysis of Hines (1991b, 1993b) did not im-
pose any longness criteria on interacting waves, and so
it could still simulate a cutoff since it would not reject
the results in Fig. 8d (even though Approximations 1
and 2 mostly fail in this case).

We shall now look to incorporate additional effects
that we have omitted up to this point, to see whether
they affect these findings in any significant way.

7. Effect of the vertical velocity and horizontal
wavelength of the long wave
(Approximations 1a and 1c)

Approximation 1 also neglects the effects of long-
wave vertical velocities (Approximation 1a) and hori-
zontal wavelengths (Approximation 1c), as has our anal-
ysis up to this point. Hines (1991b, 1993b) extended
his analysis to investigate how larger-scale vertical ve-
locities might modify his Doppler-spread theory (see
also appendix A). We can gauge the effects in our sim-
plified solutions by now considering the general (z ±
0) ray solutions of section 4e, in which the effect of
both the vertical velocity and the horizontal wavelength
of the long wave on the short wave are included.

Figure 9 considers the same five short waves depicted
in earlier figures. Here, these waves were refracted by
a long wave with (cz)lw 5 21 m s21 and z 5 21.58
(panel a) and 11.58 (panel b). These small z values
yield only small Wlw values, but |z| values any larger
than these yield high-frequency long-wave oscillations
and violations of longness criteria for the short waves.

Since klw ± 0 here, (14a) no longer vanishes, so some
spreading of short-wave k values now occurs. Thus, the
refraction of short waves in Fig. 9 is no longer confined
along a k curve. While we note some differences in the
refraction characteristics from Fig. 7, it is clear that the
horizontal wavelength and vertical velocity of the long-
wave oscillation do not produce major changes in the
refraction characteristics of these short waves. Note,
however, that short-wave refraction is greater for z ,
0 than for z . 0. In the former case, increases and
decreases in k accentuate similar changes in v, whereas
for z . 0, k tends to increase as v decreases (and vice
versa), which acts to reduce the range of short-wave
refraction.

8. Effect of more than one long-wave oscillation

In all analysis up to this point, we have considered
the refraction of short waves by a single long wave of
constant steady amplitude. This yields a deterministic
spreading of short-wave m and v values. However,
Doppler-spread theory considers the statistical proper-
ties of waves refracted by a randomly phased spectrum
of many other waves. To study this to some extent, we
consider a background field of linearly superposed long
waves of the form

J

U (x, z, t) 5 (U ) sin[(k ) x 1 (m ) zOlw max i lw i lw i
i51

2 (v ) t 1 (q ) ]lw i lw i

J

5 (U9 ) (x, z, t), (36a)O lw i
i51

J 2 f
V (x, z, t) 5 (U ) cos[(k ) x 1 (m ) zOlw max i lw i lw i[ ](v )i51 lw i

2 (v ) t 1 (q ) ],lw i lw i

(36b)

J 2(k )lw iW (x, z, t) 5 (U9 ) (x, z, t), (36c)Olw lw i[ ](m )i51 lw i

where the subscript i denotes the ith long-wave oscil-
lation. The superposition is linear in that we have ig-
nored any Doppler spreading of individual long-wave
parameters or WKB violations that might arise as these
long waves interact with each other. This is similar to
the approach taken by Henyey and Pomphrey (1983) in
their modeling of short-wave refraction in the ocean.

As a sample simulation of these effects, we selected
J 5 8 long waves and gave each one the same peak
amplitude of (Umax)i 5 4 m s21, which from (36a) and
using the same mc and N values as before, yields an rms
b value of
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FIG. 9. As in Fig. 2 but using the short-wave solutions of section 4e assuming a long wave of (cz)lw 5 21 m s21 and (a) z 5 21.58 and
(b) z 5 11.58. The critical-level criterion is replaced here with a dissipative criterion |m| $ mM 5 200.

FIG. 10. As in Fig. 2 but showing for each short wave the results of nine separate numerical ray integrations through a field of eight
superposed long-wave oscillations, for which (a) (klw)i , 0 and (b) (klw)i . 0. See section 8 for more details.

(U ) mlw rms cb 5 ø 1. (37)rms N

The locations of the eight long waves that we chose are
shown in Fig. 10. We then traced short waves from
x0 5 z0 5 t0 5 0 through nine separate realizations of
the superposed long-wave velocity field (36a)–(36c),
changing the initial phases (qlw)i in each simulation. To

match our earlier results as much as possible, we set
Ulw(0, 0, 0) 5 0 so that the short wave always com-
menced propagation within a stationary atmosphere.
This required choosing (qlw)i 5 n1808, where n is a
random integer. The short-wave ray equations were in-
tegrated using a 1 s time step.

Results for the five short waves considered earlier are
shown in Fig. 10, for cases where (klw)i , 0 (panel a)
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FIG. 11. Ray loci in (z, t) space from ray integrations for the short wave of initial parameters |m0| ø 0.9 and ø 82 from Fig. 10, for|v̂ |0

the case (a) (klw)i , 0 (Fig. 10a) and (b) (klw)i . 0 (Fig. 10b). Rays that terminated before z 5 100 km encountered turning levels.

and (klw)i . 0 (panel b). Nine curves are plotted for
each short wave (i.e., 45 curves in each panel), sum-
marizing short-wave refraction within each of the nine
realizations of the long-wave velocity field (36a)–(36c).
In addition to turning levels, ray integrations were also
terminated if the short wave propagated either to a
height of 100 km or for a time exceeding ;2.66 days
(;3.75 inertial periods). These limits allowed free-prop-
agating short waves to propagate through a minimum
of eight cycles of each long-wave oscillation, thus al-
lowing a more statistical picture of the short-wave re-
fraction to emerge.

The range of refraction in Fig. 10 is greater than in
Figs. 7 and 9. This occurs because b values greater than
unity can arise here as the individual long waves su-
perpose (bmax ø 4 in these experiments). Despite this,
there were no occurences of either critical levels or |m|
values exceeding mM 5 200, although two of the five
waves were refracted to turning levels in some integra-
tions (see Fig. 11). As in Fig. 9, short-wave refraction
was greater for (klw)i , 0 (zi , 0) than for (klw)i . 0.
Indeed, the basic characteristics of the refraction in Fig.
10 do not differ greatly from those in Figs. 7 and 9. In
particular, there is again no tendency for short waves at
|m0| * 1 to be removed via refraction to small vertical
scales (|m| . mM).

Time–height group trajectories for the short wave of
|m0| ø 0.9 and ø 82 from Fig. 10 are shown in Fig.|v̂ |0

11. Note that in the (klw)i , 0 simulations (Fig. 11a),
the short-wave group sometimes moves downward for
a time. That the wave remains free propagating in these
instances can be understood from the ray equation

dz
gnd5 c (x, z, t) 5 W (x, z, t) 1 c (x, z, t), (38)gz lw gzdt

where (x, z, t) is the ground-based vertical groupgndcgz

velocity of the wave. Instances of downward group mo-
tion in Fig. 11a occur when Wlw(x, z, t) , (x, z, t)gndcgz

, 0 so that the intrinsic frame is moving downward and
the intrinsic group velocity remains upward (cgz(x, z, t)
. 0).

9. Validity of WKB ray theory (Approximation 2)

We have made extensive use of ray theory in sections
4–8, which requires that WKB plane-wave solutions for
the short waves remain valid (i.e., that Approximation
2 always holds). We ensured this initially for the short
waves using the longness criterion of section 3c. Here
we briefly address the applicability of WKB ray theory
for short waves within propagating long-wave fields.

For ray theory to remain valid within arbitrary en-
vironments, changes in wavenumber and frequency
must always be much slower than the phase variations
of the wave motion itself. Dimensionless parameters
have been derived that check whether these conditions
hold and can be evaluated at each time step during ray
integrations (e.g., Einaudi and Hines 1970; Broutman
1984; Eckermann and Marks 1996). The results show
that, typically, ray theory only breaks down at caustics
(e.g., Broutman and Young 1986) or when the long-
wave shear is so strong that it produces gradient Rich-
ardson numbers &1 (Broutman 1984). In the scale-sep-
arated ray simulations reported here, WKB requirements
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were violated and ray theory failed only as waves ap-
proached critical levels and turning levels, at which
point we terminated further tracing of the ray. Else-
where, approximation 2 remained valid. Thus, while we
have demonstrated limited validity for approximation 1
in this study, approximation 2 is much more robust,
giving us confidence that WKB ray methods can provide
further insights into aspects of wave–wave interactions
and wave spectra (e.g., Flatté et al. 1985; Henyey et al.
1986).

10. Discussion

The idealized problems in this paper were devised to
provide insights into the range of validity of Approxi-
mations 1–3 of Doppler-spread theory, as well as in-
teractions among atmospheric gravity waves in general.
Critical scrutiny of these approximations was antici-
pated in two recent review articles by Hines (1996,
1997c). In these articles, Doppler-spread theory was cast
within the broad general framework of advective non-
linearity, with mathematical development minimized to
deflect criticisms of the theory based on the approxi-
mations used in earlier studies. Thus, potential ramifi-
cations of the present results for Doppler-spread theory
have been anticipated to some extent and preemptively
rebutted by Hines (1996, 1997c).

For example, Doppler-spread theory used Approxi-
mations 1–3 to derive model spectra of relative poten-
tial-temperature fluctuations at large Fourier wave-
numbers M that asymptoted to M21 shapes for f 5 0
(see appendix B), as opposed to the observed M23 shape.
Hines (1993b, 1997c) argued that this breakdown in the
theory at large M arose due to the onset of nonnegligible
spreading by wave-induced vertical-velocity fluctua-
tions (i.e., Approximation 1a broke down) but that
Doppler-spread theory gave acceptable results for waves
of intermediate |m| values up to ;10 mc. Derived spectra
in this range had shapes close to M23 at M . Mc ; mc.

Our scale-separated simulations indicated that it was
Approximation 1b—the neglect of time variations of the
background wave field—that broke down most notably
at large |m|. Furthermore, it failed not just for large |m|
waves, but for all but the smallest |m| (fastest cgz) waves
(see Fig. 6). When Approximation 1b was removed for
the specific case of a short wave propagating through a
long-wave background, any tendency for a sharp in-
crease in the probability of short-wave obliteration at
|m0| * 1 (|m| ; mc) was eliminated. Extensions of this
model to include horizontal wavelengths (i.e., removal
of approximation 1c), vertical-velocity fluctuations (re-
moval of approximation 1a), and a background con-
taining more than one long wave did not lead to any
major changes in these basic conclusions.

The imposition of scale separation was critiqued by
Hines (1997c) because spreading is produced only by
long waves and so additional spreading by waves of
similar or shorter spatial scales is omitted. Spreading

by waves of all scales is permitted within Doppler-
spread theory. While this of course is a valid criticism,
scale separation was imposed here to ensure consistency
with Approximations 1–2 of the original theory of Hines
(1991b, 1993b). The view taken here is that these scale-
separated simulations represent a proper application and
extension of the original equations of Hines (1991b,
1993b) to a restricted class of interactions to which they
are applicable. These simulations supported the basic
contention of Doppler-spread theory that gravity wave
m values are spread more as one progresses to larger
|m0| values (e.g., Figs. 7, 9, and 10), and culminated in
section 8 with numerical simulations that resembled the
approach taken by Henyey and Pomphrey (1983) to
model oceanic wave interactions.

Thus, while Doppler-spread theory is conceived to be
a comprehensive model of broadband nonlinear advec-
tive processes, we view its current mathematical for-
mulations as a simplified version of the ‘‘eikonal’’ (ray
tracing) spectral models of oceanic gravity waves (e.g.,
Flatté et al. 1985; Henyey et al. 1986; Broutman et al.
1997). Hines (1991b, 1996, 1997c), on the other hand,
argued that Doppler-spread theory corresponded best to
‘‘case III’’ of a general statistical mechanical theory of
oceanic gravity waves developed by Allen and Joseph
(1989). This model is discussed extensively by Hines
(1991b, 1993b, 1996, 1997c), and an atmospheric ver-
sion of it was presented recently by Chunchuzov (1996).
Hines (1991b, 1997c) argued that the Allen and Joseph
(AJ) model represented a full formal embodiment of
Doppler-spread interactions, and he deferred to its find-
ings at M k Mc, where it produced the required M23

spectrum. Hines (1996, 1997c) further argued that the
Doppler-spread theory of Hines (1991b, 1993b) com-
plemented the AJ model by explaining physically both
the formation of wavenumber cutoffs and the initial
transition to decaying ‘‘tail spectra’’ at scales smaller
than the cutoff wavenumbers.

However, the AJ model differs from eikonal models.
It does not include refraction, but instead tracks the
velocities and displacements of air parcels under the
influence of a prescribed canonical distribution of wave
modes. These Lagrangian displacements and velocities
are then transformed to Eulerian measurement frames,
and spectra are computed. While no modes exist at
wavenumbers |m| . m̃c (where m̃c is the Lagrangian
cutoff wavenumber), advective nonlinearities within the
Eulerian frame produce variance at M k Mc ; m̃c with
an M23 spectrum. This variance departs from the grav-
ity-wave dispersion surface and so is considered to be
nonwavelike and essentially devoid of physical signif-
icance when viewed from the Eulerian frame (Allen and
Joseph 1989): Hines (1996, 1997c) has coined the term
‘‘wavulence’’ to describe it.

Conversely, no violations of the dispersion relation
occur for waves in an eikonal formulation within the
Eulerian frame: the system always remains entirely
wavelike (Approximation 2), even as waves are refract-
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ed to larger |m| values to produce tail spectra. Allen and
Joseph (1989) discuss other possible differences be-
tween their theory and eikonal theories on p. 216 of
their paper (while noting that precise relationships be-
tween them are unclear). Given that the Doppler-spread
formulation of Hines (1991b, 1993b) is viewed here as
being a simplified eikonal formulation, then the degree
to which Doppler-spread theory corresponds to the AJ
model is unclear at present.

While Doppler-spread theory now defers to the AJ
model in many areas, the original formulation of Hines
(1991b, 1993b) is still used to predict the cutoff wave-
number mc. This cutoff is a primary parameter in recent
Doppler-spread parameterizations of gravity-wave mo-
mentum deposition (Hines 1997a, 1997b), yet no clear
cutoff occurred in our scale-separated simulations once
Approximation 1b was eliminated (see Fig. 8). If Dopp-
ler-spreading processes do produce a cutoff at M ; Mc

and M23 spectra thereafter, as argued by Hines (1991b,
1993b), then it seems that further extensions and re-
finements of the theory are needed to explain this result
self-consistently.

Many important effects were omitted from our sim-
ulations. For example, we did not incorporate vertical
profiles of mean wind velocities U(z), which refract
waves appreciably as they propagate through the middle
atmosphere in a manner consistent with the theory of
sections 2 and 3 (e.g., Lindzen 1981; Eckermann 1995).
Other important omissions include wave-induced ther-
mal gradients, different horizontal propagation azi-
muths, damping, and saturation. While these processes
can be incorporated within ray-based simulations (e.g.,
Marks and Eckermann 1995; Eckermann and Marks
1996), others cannot, such as strongly nonlinear non-
scale-separated wave–wave and wave–turbulence inter-
actions (e.g. Frederiksen and Bell 1984; Müller et al.
1986; Allen and Joseph 1989; Weinstock 1990; Sonmor
and Klaassen 1996).

The experience gained from oceanic and laboratory
studies may aid further understanding of atmospheric
gravity wave interactions and spectra. The oceanic re-
view of Müller et al. (1986) specifically recommended
direct nonlinear numerical simulations of the oceanic
wave field, and models of this kind have produced spec-
tra in good agreement with observations (e.g., Orlanski
and Cerasoli 1981; Shen and Holloway 1986; Hibiya et
al. 1996). Recent numerical and laboratory experiments
have also generated M23 spectra as gravity waves be-
come unstable and break (Benielli and Sommeria 1996;
Bouruet-Aubertot et al. 1996), and wave overturning
also observed by Shen and Holloway (1986) within their
numerically simulated K 23 spectral regime. These issues
relate to Approximation 3 of Doppler-spread theory,
which we have said little about here, and merit further
investigation in the atmosphere where wave dissipation
is large. Similar models of atmospheric gravity wave
spectra are still very limited (Frederiksen and Bell 1984;
Huang et al. 1992) but are now feasible using existing

codes and computing capabilities (e.g., Fritts et al.
1996).

11. Conclusions

In this study, we assessed key approximations used
in Doppler-spread models of atmospheric gravity waves.
Our results confirmed that the velocity oscillations of
long waves produce important refractive spreading of
short-wave vertical wavenumbers and frequencies in the
atmosphere. However, we found that Doppler-spread
models of these effects, which ignore the propagation
of the long-wave velocity field, did not adequately de-
scribe either the amplitudes or group trajectories of short
waves as they were refracted to shorter vertical wave-
lengths. We employed ray methods to describe more
accurately the refraction and amplitude characteristics
of short waves propagating through long waves. These
solutions revealed a considerable reduction in the
amount of wavenumber spreading compared to Doppler-
spread predictions. Most notably, a cutoff in unspread
vertical wavenumbers at |m0| ; mc (|m0| ; 1), which is
a key aspect of Doppler-spread models of gravity-wave
fluctuation spectra and momentum deposition, no longer
occurred.

The simulations reported here dealt with a restricted
and idealized class of advective wave–wave interac-
tions. Nevertheless, the results indicated that more work
is needed to understand the manner by and extent to
which Doppler-spread-like processes influence the spec-
tra and momentum dissipation of gravity waves within
the atmosphere.
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APPENDIX A

Gravity Wave Propagation through a
Nonhorizontal Shear Flow

Here we consider gravity wave propagation through
a stationary nonhorizontal zonally symmetric mean-
flow profile (U(z), 0, W(z)), In the midfrequency ap-
proximation, a gravity wave propagating through such
a region must satisfy the dispersion relation

v(z) 5 V 2 kU(z) 2 m(z)W(z)

kN
5 k[c 2 U(z)] 2 m(z)W(z) 5 2 , (A1)x m(z)
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FIG. A1. Loci of intrinsic horizontal phase speeds |cx 2 U| and
vertical wavenumbers |m| for a gravity wave in the presence of five
different values of W, as labeled on each curve. Results are shown
for (a) k 5 2p (10 km)21 and (b) k 5 2p (100 km)21. See text for
further details.

for constant N and small curvature in the flow profile.
Equation (A1) was used by Hines (1991b, 1993b) to
gauge the effect that random U and W oscillations of
larger-scale waves might have on the Doppler spreading
of shorter waves. Hines (1991b) noted that (A1) pro-
duced a quadratic equation for m. Our purpose here is
to highlight some interesting physical consequences of
these solutions.

First, note that (A1) has the same basic form as (30),
except that here 2W(z) appears in place of (cz)lw and V
appears in place of V0 (note also that V and V0 are both
constants). Hence, from (31), the solution of (A1) is

1
2 2 1/2m 5 {k(c 2 U) 6 [k (c 2 U) 1 4kNW] }.x x2W

(A2)

The solution of the wave action equation (11) is

(cgz 1 W)A 5 const, (A3)

which again has the same form as (27) but with (cz)lw

replaced by 2W(z). Thus, the effects discussed in sec-
tion 5 for the short-wave solutions (27) and (31) can
also be applied to this problem.

For W(z) . 0, the solutions have the properties dis-
cussed in sections 5a and 5b. Thus critical levels vanish,
and the amount of wavenumber–frequency refraction is
reduced. Note in particular that when cx 2 U vanishes
(the standard critical-level criterion for W 5 0), then,
from (A1) and (A2), the wave survives and has a vertical
wavenumber m 5 mr and frequency v 5 2mrW, where

1/2
kN

m 5 2 . (A4)r ) )W

The case W(z) , 0 has much in common with the
antipropagating solutions discussed in section 5c. No
solutions for m are possible when the discriminant in
(A2) is negative. This also occurs at m 5 mr, which in
this case corresponds to the condition

cgz 5 2W. (A5)

This, in turn, yields A → ` according to (A3), which
is a caustic singularity equivalent to the one studied by
Broutman and Young (1986). The explosive buildup of
wave action density near these caustic points implied
by (A5) and (A3) suggests that wave saturation may be
possible, depending on the initial amplitude of the wave
(see also Broutman 1986; Broutman et al. 1997). WKB
conditions break down in these regions, and Broutman
and Young (1986) argued that ‘‘separatrix crossings’’
occur at the caustic point, which correspond to a transfer
from one root to the other in (A2), an assertion supported
in later studies by Broutman (1986) and Bruhwiler and
Kaper (1995). The caustic (m 5 mr) occurs at an intrinsic
horizontal phase speed of

1/2
m W NWr|(c 2 U) | 5 2 5 2 . (A6)x r ) ) ) )k k

Thus, for W ± 0, the ‘‘critical level’’ criterion |cx 2 U|
5 0 can be replaced by a more general ‘‘caustic level’’
criterion cgz 1 W 5 0 implied by (A3) and (A5). The
critical level then follows as a limiting form of the caus-
tic-level condition as cgz and W both approach zero.

Figure A1 shows the variation of |m| as a function of
cx 2 U for various values of W and k. The turning points
on the W , 0 curves correspond to the caustic point,
as defined by (A4) and (A6), and demark where the
solutions cross from one of the roots in (A2) to the
other. Note too that the W . 0 curves yield m 5 mr at
cx 2 U 5 0.

APPENDIX B

Asymptotic ‘‘Doppler Spread’’ Spectra at
Large M

Hines (1991b) considered the power spectrum of rel-
ative fluctuations in potential temperature, Q2(k, m). Ap-
proximations 1 and 2, which use ‘‘fast limit’’ solutions
(see section 5a), yielded a spectral conservation relation
(e.g. Hines 1991b)

m dm02 2Q (k, m) 5 Q (k, m ) . (B1)0 0 m dm0

This arises from conservation of Bz with height for short-
wave solutions in the fast limit. Hines used midfre-
quency approximations, which, from (5), yield dm0/dm
5 (m0/m)2, so (B1) becomes
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Q2(k, m) 5 (k, m0)m0m21.2Q0 (B2)

From here, Hines (1991b) used statistical methods to
describe the multiwave Doppler spreading of short-wave
m values by larger-scale waves using probability density
functions, which he integrated through the right hand
side of (B2) using models of (k, m0) to yield a one-2Q0

dimensional model Doppler-spread spectrum Q2(M).
The m21 factor in (29) carried through this integration
and ultimately yielded an asymptotic M21 dependence
of the spectrum at M k MC (where MC 5 N/2sT in his
derivation and sT is the total horizontal velocity variance
of the wave field).

We can rework this analysis using the z 5 0 short-
wave solutions in the midfrequency approximation.
Since in this particular problem nondissipating short
waves conserve 2(cz)lwA(r 1 1) from (33), where A 5
E/v ø 2Em/kN, and k, N, and (cz)lw are constants, then
this implies

m (1 1 r ) dm0 0 02 2Q (k, m) 5 Q (k, m ) , (B3)0 0 m(1 1 r) dm

where r0 is the phase/group ratio at m0. Combining (30)
and (35) to eliminate frequency terms, and then differ-
entiating, yields

dm 1 1 r0 5 . (B4)
dm 1 1 r0

Substitution of (B4) into (B3) then yields the same result
as (B2) and, hence, the same asymptotic M21 spectral
shape at large Fourier wavenumbers M. Note that this
derivation holds only for a short wave propagating
though a single low-frequency (z ø 0) long wave of
constant amplitude in an unsheared mean flow.

REFERENCES

Allen, K. R., and R. I. Joseph, 1989: A canonical statistical theory
of oceanic internal waves. J. Fluid Mech., 204, 185–228.

Allen, S. J., and R. A. Vincent, 1995: Gravity-wave activity in the
lower atmosphere: Seasonal and latitudinal variations. J. Geo-
phys. Res., 100, 1327–1350.

Andrews, D. G., and M. E. McIntyre, 1978: On wave-action and its
relatives. J. Fluid Mech., 89, 647–664.

Bacmeister, J. T., S. D. Eckermann, P. A. Newman, L. Lait, K. R.
Chan, M. Loewenstein, M. H. Profitt, and B. L. Gary, 1996:
Stratospheric horizontal wavenumber spectra of winds, potential
temperature and atmospheric tracers observed by high-altitude
aircraft. J. Geophys. Res., 101, 9441–9470.

Benielli, D., and J. Sommeria, 1996: Excitation of internal waves and
stratified turbulence by parametric instability. Dyn. Atmos.
Oceans, 23, 335–343.

Bouruet-Aubertot, P., J. Sommeria, and C. Staquet, 1996: Stratified
turbulence produced by internal wave breaking: Two-dimen-
sional numerical experiments. Dyn. Atmos. Oceans, 23, 357–
369.

Broutman, D., 1984: The focusing of short internal waves by an
inertial wave. Geophys. Astrophys. Fluid Dyn., 30, 199–225.
, 1986: On internal wave caustics. J. Phys. Oceanogr., 16, 1625–
1635.
, and W. R. Young, 1986: On the interaction of small-scale in-

ternal waves with near-inertial waves. J. Fluid Mech., 166, 341–
358.
, C. Macaskill, M. E. McIntyre, and J. W. Rottman, 1997: On
Doppler-spreading models of internal waves. Preprints, 11th
Conf. on Atmospheric and Oceanic Fluid Dynamics, Tacoma,
WA, Amer. Meteor. Soc., 304–308.

Bruhwiler, D. L., and T. J. Kaper, 1995: Wavenumber transport: Scat-
tering of small-scale internal waves by large-scale wavepackets.
J. Fluid Mech., 289, 379–405.

Chunchuzov, I. P., 1996: The spectrum of high-frequency internal
waves in the atmospheric waveguide. J. Atmos. Sci., 53, 1798–
1814.

D’Asaro, E. A., and M. D. Morehead, 1991: Internal waves and
velocity fine structure in the Arctic Ocean. J. Geophys. Res., 96,
12 725–12 738.

Desaubies, Y., and W. K. Smith, 1982: Statistics of Richardson num-
ber and instability in oceanic internal waves. J. Phys. Oceanogr.,
12, 1245–1259.

Dewan, E. M., 1991: Similitude modeling of internal gravity wave
spectra. Geophys. Res. Lett., 18, 1473–1476.
, and R. E. Good, 1986: Saturation and the ‘‘universal’’ spectrum
for vertical profiles of horizontal scalar winds in the atmosphere.
J. Geophys. Res., 91, 2742–2748.

Eckermann, S. D., 1992: Ray-tracing simulation of the global prop-
agation of inertia gravity waves through the zonally-averaged
middle atmosphere. J. Geophys. Res., 97, 15 849–15 866.
, 1995: Effect of background winds on vertical wavenumber
spectra of atmospheric gravity waves. J. Geophys. Res., 100,
14 097–14 112.
, and C. J. Marks, 1996: An idealized ray model of gravity wave–
tidal interactions. J. Geophys. Res., 101, 21 195–21 212.
, I. Hirota, and W. K. Hocking, 1995: Gravity wave and equa-
torial wave morphology of the stratosphere derived from long-
term rocket soundings. Quart. J. Roy. Meteor. Soc., 121, 149–
186.

Einaudi, F., and C. O. Hines, 1970: WKB approximation in application
to acoustic-gravity waves. Can. J. Phys., 48, 1458–1471.
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